
ASC Student Supercomputer Challenge:

Introduction to Fortran

LI Huimin
Supercomputing Center,

University of Science and Technology of China
2022.01.20

1

Why Fortran

• The biggest feature: close to the natural description of mathematical
formulas, has high execution efficiency in the computer

• Easy to learn, strict grammar

• Directly operate on matrices and complex numbers, which MatLab
has inherited

• Widely used in the field of numerical computing, accumulated a
large number of efficient and reliable source programs

• Widely used in parallel computing and high-performance computing

• Many specialized large-scale numerical computing computers
optimized for Fortran

• The successive introduction of Fortran 90/95/2003 makes Fortran
language possess some features of modern high-level programming
languages

• The storage order of its matrix elements in the memory space adopts
Column major, MatLab inherits this(most used C language adopts
Row major)

Adress
Column-

major order

Row-major

order

0 a11 a11

1 a21 a12

2 a12 a13

3 a22 a21

4 a13 a22

5 a23 a23

A =
a11 a12 a13

a21 a22 a23

2

C/C++Fortran

History of Fortran

• FORTRAN (1957)

• FORTRAN II (1958)

• FORTRAN III (1958)

• FORTRAN IV (1962)

• FORTRAN 66 (1966)

• FORTRAN 77 (1977)

• Fortran 90 (ISO/IEC 1539:1991)
• “fairly” modern (structures, etc.)

• Current “workhorse” Fortran

• Fortran 95 (1997)

• Fortran 2003(ISO/IEC 1539-1:2004)
• Gradually being implemented by compiler companies

• Object-oriented support

• Interoperability with C is in the standard

• Fortran 2008(September 2010)

• Fortran 2018(28 November 2018)

John Warner Backus

(Dec. 3, 1924 – Mar. 17, 2007) IBM 704 mainframe computer

• The first widely used high-level programming language

• Name derived from Formula Translating System, Formula Translator,

Formula Translation, or Formulaic Translation

• The Fortran language was developed to meet the needs of numerical

computing.

• In December 1953, IBM engineer John Backus (J. Backus) deeply

realized the difficulty of programming, and wrote a memorandum to

Chairman Cuthbert Hurd, suggesting that the IBM 704 system Design

a new computer language to improve development efficiency.

• John von Neumann(Dec. 28, 1903 – Feb. 8, 1957), a consultant at

IBM at the time, strongly opposed it because he thought it was

impractical and unnecessary.

• In 1957, IBM developed the first FORTRAN language, which ran on

the IBM704 computer.

• The first FORTRAN program was tested at the Westinghouse Beddes

nuclear power plant in Maryland. On the afternoon of Friday, April

20, 1957, an IBM software engineer decided to compile the first

FORTRAN program in the power plant. When the code was entered,

after compiling, the printer listed a message: "Error in the source

program...behind the right parenthesis. No comma", which surprised

the field personnel, and after correcting this error, the printer output

the correct result. 3

Simple Porgrams

C------Average------------------------

PROGRAM Example_1_1

REAL a, b, av1, av2

READ (*,*) a, b

av1 = (a + b)/2

av2 = sqrt(a*b)

WRITE(*,*) av1, av2

END

PROGRAM Example_1_1 ! Average

REAL :: a, b, av1, av2

READ *, a, b

av1 = (a + b)/2; av2 = (a*b)**0.5

PRINT *, av1, av2

CALL ave(a,b,av1)

END

Subroutine AVE(x, y, sum)

real x, y, sum

sum=x+y

End subroutine
4

Program Units

A Fortran program consists of one or more program units, terminated
by an END statement.

• main program: Only one

• external subprogram
• a function or subroutine that is not contained within a main program, a module, a submodule, or another

subprogram.

• defines a procedure to be performed and can be invoked from other program units of the Fortran program

• modules, submodules, and block data program units are not executable, so they are not considered to be
procedures. (Modules and submodules can contain module procedures, though, which are executable.)

• modules and submodules
• contain definitions that can be made accessible to other program units: data and type definitions, definitions of

procedures (called module subprograms), procedure interfaces

• module subprograms can be either functions or subroutines

• can be invoked by other module subprograms in the module, or by other program units that access the module

• block data
• specifies initial values for data objects in named common blocks

• can be replaced by a module program unit

5

Statements

Scoping Unit Restricted Statements

Main program ENTRY, IMPORT, and RETURN statements

Module ENTRY, FORMAT, IMPORT, OPTIONAL, and

INTENT statements, statement functions, and

executable statements

Submodule ENTRY, FORMAT, IMPORT, OPTIONAL, and

INTENT statements, statement functions, and

executable statements

Block data program unit CONTAINS, ENTRY, IMPORT, and FORMAT

statements, interface blocks, statement functions, and

executable statements

Internal subprogram CONTAINS, IMPORT, and ENTRY statements

Interface body CONTAINS, DATA, ENTRY, IMPORT
2
, SAVE, and

FORMAT statements, statement functions, and

executable statements

BLOCK construct CONTAINS, DATA, ENTRY, and IMPORT

statements, statement functions, and these

specification statements: COMMON,

EQUIVALENCE, IMPLICIT, INTENT (or its

equivalent attribute), NAMELIST, OPTIONAL (or its

equivalent attribute), and VALUE (or its equivalent

attribute)

6

Keywords
• A keyword can either be a part of the syntax of a statement (statement keyword), or it

can be the name of a dummy argument (argument keyword). Examples of statement
keywords are WRITE, INTEGER, DO, and OPEN

• In the intrinsic function UNPACK (vector, mask, field), for example, vector, mask, and
field are argument keywords. They are dummy argument names, and any variable may
be substituted in their place.

• Keywords are not reserved. For example, a program can have an array named IF, read, or
Goto, even though this is not good programming practice. The only exception is the
keyword PARAMETER. If you plan to use variable names beginning with
PARAMETER in an assignment statement, you need to use compiler option altparam.

• Using keyword names for variables makes programs harder to read and understand. For
readability, and to reduce the possibility of hard-to-find bugs, avoid using names that
look like parts of Fortran statements. Rules that describe the context in which a keyword
is recognized are discussed in topic Program Units and Procedures.

• Argument keywords are a feature of Standard Fortran that let you specify dummy
argument names when calling intrinsic procedures, or anywhere an interface (either
implicit or explicit) is defined. Using argument keywords can make a program more
readable and easy to follow. 7

Names

• Names identify entities within a Fortran program unit (such
as variables, function results, common blocks, named
constants, procedures, program units, namelist groups, and
dummy arguments). In FORTRAN 77, names were called
"symbolic names".

• A name can contain letters, digits, underscores (_), and the
dollar sign ($) special character. The first character must be
a letter or a dollar sign.
• Be careful when defining names that contain dollar signs. A dollar

sign can be a symbol for command or symbol substitution in
various shell and utility commands.

• In Fortran 2003, a name can contain up to 63 characters.

• The length of a module name (in MODULE and USE
statements) may be restricted by your file system.

• In an executable program, the names of the following
entities are global and must be unique in the entire program:
• Program units
• External procedures
• Common blocks
• Modules

Valid Names

NUMBER

FIND_IT

X

Invalid Names

5Q Begins with a numeral.

B.4 Contains a special character

other than _ or $.

_WRON

G

Begins with an underscore.

8

Character Sets

• Consists of follow:
• All uppercase and lowercase letters (A - Z and a - z)

• The numerals 0 - 9

• The underscore (_)

• The right special characters

•Other printable characters
• include the tab character (09 hex), ASCII characters with codes in the

range 20(hex) through 7E(hex), and characters in certain special
character sets

• that are not in the Standard Fortran character set can only appear in
comments, character constants, Hollerith constants, character string edit
descriptors, and input/output records

• Uppercase and lowercase letters:
• case-insensitive: treated as equivalent when used to specify program

behavior (except in character constants and Hollerith constants)

• case-sensitive: treated as not equivalent when on the Unix/Linux/Mac
OS(Windows/DOS is equivalent), the uppercase and lowercase of file or
directory name: INCLUDE(‘a.f90’)

Characte

r

Name Char

acter

Name

blank or

<Tab>

Blank (space)

or tab

; Semicolon

= Equal sign ! Exclamation point

+ Plus sign " Quotation mark or

quote

- Minus sign % Percent sign

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Backslash < Less than

(Left parenthesis > Greater than

) Right

parenthesis

? Question mark

[Left square

bracket

' Apostrophe

] Right square

bracket

` Grave accent

{ Left curly

bracket

^ Circumflex accent

} Right curly

bracket

| Vertical line

, Comma $ Dollar sign

(currency symbol)

. Period or

decimal point

Number sign

: Colon @ Commercial at
9

Source Forms
• source code can be in free, fixed, or tab form

• Fixed or tab forms must not be mixed with free form in the same source program

• different source forms can be used in different source programs.

• allow lowercase characters to be used as an alternative to uppercase characters

• several characters are indicators in source code (unless they appear within a comment or a
Hollerith or character constant). The following are rules for indicators in all source forms:
• Comment indicator

• A comment indicator can precede the first statement of a program unit and appear anywhere within a program unit. If
the comment indicator appears within a source line, the comment extends to the end of the line

• An all blank line is also a comment line

• Comments have no effect on the interpretation of the program unit

• Statement separator
• More than one statement (or partial statement) can appear on a single source line if a statement separator is placed

between the statements. The statement separator is a semicolon character (;).

• Consecutive semicolons (with or without intervening blanks) are considered to be one semicolon.

• If a semicolon is the first character on a line, the last character on a line, or the last character before a comment, it is
ignored.

• Continuation indicator
• A statement can be continued for more than one line by placing a continuation indicator on the line. Intel Fortran

allows at least 511 continuation lines for a fixed or tab source program. Although Standard Fortran permits up to 256
continuation lines in free-form programs, Intel Fortran allows up to 511 continuation lines.

• Comments can occur within a continued statement, but comment lines cannot be continued. 10

Indicators in Source Forms
Source Item Indicator1 Source Form Position

Comment ! All forms Anywhere in source code

Comment line ! Free At the beginning of the source line

!, C, or * Fixed In column 1

Tab In column 1

Continuation line
2

& Free At the end of the source line

Any character except zero or

blank

Fixed In column 6

Any digit except zero Tab After the first tab

Statement separator ; All forms Between statements on the same line

Statement label 1 to 5 decimal digits Free Before a statement

Fixed In columns 1 through 5

Tab Before the first tab

A debugging statement
3

D Fixed In column 1

Tab In column 1

1
If the character appears in a Hollerith or character constant, it is not an indicator and is ignored.

2
For fixed or tab source form, at least 511 continuation lines are allowed. For free source form, at least 255 continuation lines are allowed.

3
Fixed and tab forms only.

!Free Forms

READ*, A !,B

! READ*,C

WRITE(*,*) A, &

B

A=A+1; B=B+1

If(A==1) GOTO 100

A=A+C

100 A=A+B

CFixed Forms

C23456789

READ*, A !,B

! READ*,C

C WRITE(*,*) A

WRITE(*,*) A

A=A+1;B=B+1

100 A=A+B

D PRINT*,1

11

Free Source Form
Optional Blanks Required Blanks

BLOCK DATA CASE DEFAULT

DOUBLE COMPLEX DO WHILE

DOUBLE PRECISION IMPLICIT type-specifier

ELSE IF IMPLICIT NONE

ELSE WHERE INTERFACE ASSIGNMENT

END ASSOCIATE INTERFACE OPERATOR

END BLOCK MODULE PROCEDURE

END BLOCK DATA RECURSIVE FUNCTION

END DO RECURSIVE SUBROUTINE

END ENUM RECURSIVE type-specifier FUNCTION

END FILE type-specifier FUNCTION

END FORALL type-specifier RECURSIVE FUNCTION

END FUNCTION

END IF

END INTERFACE

END MODULE

END PROGRAM

END SELECT

END SUBMODULE

END SUBROUTINE

END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

SELECT TYPE

• Statements are not limited to specific positions on a source line.

• In Standard Fortran, a line can contain from 0 to 132

characters

• Intel Fortran allows the line to be of any length

• Blank characters are significant in free source form

•must not appear in lexical tokens, except within a character

context. Ex.: there can be no blanks between the exponentiation

operator **

•can be used freely between lexical tokens to improve legibility

•must be used to separate names, constants, or labels from

adjacent keywords, names, constants, or labels. Ex.: consider the
following statements:

• Some adjacent keywords must have one or more blank characters

between them. Others do not require any, ex.: BLOCK DATA can

also be spelled BLOCKDATA.

• INTEGER NUM

• GO TO 40

• 20 DO K=1,8

The blanks are required after INTEGER,

TO, 20, and DO.

12

Free Source Form: Comment Indicator

13

the exclamation point character (!) indicates a

comment if it is within a source line, or a comment

line if it is the first character in a source line.

TCOSH(Y) = EXP(Y) ! The initial statement line

! A continuation line

• The ampersand character (&) indicates a continuation line (unless it appears in a Hollerith or character constant, or

within a comment). The continuation line is the first noncomment line following the ampersand. Standard Fortran

permits up to 256 continuation lines in free-form programs, Intel Fortran allows up to 511 continuation lines.

• If the first nonblank character on the next noncomment line is an ampersand, the statement continues at the

character following the ampersand.

• If a lexical token must be continued, the first nonblank character on the next noncomment line must be an

ampersand followed immediately by the rest of the token.

• If you continue a character constant, an ampersand must be the first non-blank character of the continued line; the

statement continues with the next character following the ampersand.

• If the ampersand is omitted on the continued line, the statement continues with the first non-blank character in the

continued line. So, in the preceding example, the whitespace before "Associates" would be ignored.

• The ampersand cannot be the only nonblank character in a line, or the only nonblank character before a comment;

an ampersand in a comment is ignored.

Free Source Form: Continuation Indicator

14

TCOSH(Y) = EXP(Y) + & ! The initial statement line

EXP(-Y) ! A continuation line

TCOSH(Y) = EXP(Y) + &

& EXP(-Y)

TCOSH(Y) = EXP(Y) + EX&

&P(-Y)

ADVERTISER = "Davis, O'Brien, Chalmers & Peter&

&son“
ARCHITECT = "O'Connor, Emerson, and Davis&

& Associates"

Fixed and Tab Source Forms
• Fixed source form is identified as obsolescent.

• There are restrictions on where a statement can
appear within a line.

• By default, a statement can extend to character
position 72, any text following position 72 is ignored
and no warning message is printed. You can specify
compiler option extend-source to extend source lines
to character position 132.
• GNU Compiler(gfortran): -ffree-line-length-[n]
• Intel Fortran Compiler(ifort): -extend-source [size], -

noextend-source

• Except in a character context, blanks are not
significant and can be used freely throughout the
program for maximum legibility.

• Some Fortran compilers use blanks to pad short
source lines out to 72 characters. If portability is a
concern, you can use the concatenation operator to
prevent source lines from being padded by other
Fortran compilers or you can force short source lines
to be padded by using compiler option pad-source.
• GNU Compiler(gfortran): -fno-pad-source
• Intel Fortran Compiler(ifort): -pad-source, -nopad-source

15

Fixed and Tab Forms: Comment Indicator

• In fixed and tab source forms, the
exclamation point character (!)
indicates a comment if it is within a
source line. It must not appear in
column 6 of a fixed form line(that
column is reserved for a
continuation indicator).

• The letter C (or c), an asterisk (*), or
an exclamation point (!) indicates a
comment line when it appears in
column 1 of a source line.

c23456789

! ‘This is a comment line’

! WRITE(*,*) !this is a WRITE statement

WRITE(*,*) A

c23456789

c This is a comment line

* Write(*,*) !this is a coment line

WRITE(*,*) A

16

Fixed and Tab Forms: Continuation Indicator

In fixed and tab source forms, a continuation line is indicated by one of the following:

• For fixed form: Any character (except a zero or blank) in column 6 of a source line

• For tab form: Any digit (except zero) after the first tab

The compiler considers the characters following the continuation indicator to be part of the previous line

• Although Standard Fortran permits up to 19 continuation lines in a fixed-form program

• Intel Fortran allows up to 511 continuation lines.

If a zero or blank is used as a continuation indicator, the compiler considers the line to be an initial line of a Fortran statement.

The statement label field of a continuation line must be blank (except in the case of a debugging statement).

When long character or Hollerith constants are continued across lines, portability problems can occur. Use the concatenation operator to

avoid such problems. For example:

Use this same method when initializing data with long character or Hollerith constants. For example:

The Fortran Standard requires that, within a program unit, the END statement cannot be continued, and no other statement in the program

unit can have an initial line that appears to be the program unit END statement.

C23456789

PRINT *, 'This is a very long character constant '//

+ 'which is safely continued across lines'

C23456789

CHARACTER*(*) LONG_CONST

PARAMETER (LONG_CONST = 'This is a very long '//

+ 'character constant which is safely continued '//

+ 'across lines’)

CHARACTER*100 LONG_VAL

DATA LONG_VAL /LONG_CONST/

17

Fixed and Tab Forms: Debugging Statement Indicator

• In fixed and tab source forms, the statement label field can contain a statement
label, a comment indicator, or a debugging statement indicator.

• The letter D indicates a debugging statement when it appears in column 1 of a
source line. The initial line of the debugging statement can contain a statement
label in the remaining columns of the statement label field.

• If a debugging statement is continued onto more than one line, every
continuation line must begin with a D and a continuation indicator.

• By default, the compiler treats debugging statements as comments. However,
you can specify compiler option d-lines to force the compiler to treat debugging
statements as source text to be compiled.

• GNU Compiler(gfortran): -fd-lines-as-code, -fd-lines-as-comments

• Intel Fortran Compiler(ifort): -d-lines, -nod-lines, -DD

18

Fixed-Format Lines

• a source line has columns divided into fields for:

• statement labels

• continuation indicators

• statement text

• sequence numbers

• Each column represents a single character
Field Column

Statement label 1 through 5

Continuation

indicator

6

Statement 7 through 72 (or 132 with compiler option extend-

source)

Sequence number 73 through 80

• By default, a sequence number or other identifying information can appear in columns 73 through 80 of any fixed-format line in an Intel Fortran

program. The compiler ignores the characters in this field.

• If extend the statement field to position 132, the sequence number field does not exist.

• If use the sequence number field, do not use tabs anywhere in the source line, or the compiler may interpret the sequence numbers as part of the

statement field

C234567… ……737475…80

line 234

A=1

19

Tab-Format Lines

• Can specify a statement label field, a continuation indicator field, and
a statement field, but not a sequence number field.

• The following figure shows equivalent source lines coded with tab and
fixed source form.

• The statement label field precedes the first tab character. The continuation

indicator field and statement field follow the first tab character.

• The continuation indicator is any nonzero digit. The statement field can

contain any Fortran statement. A Fortran statement cannot start with a digit.

• If a statement is continued, a continuation indicator must be the first

character (following the first tab) on the continuation line.

• Many text editors and terminals advance the terminal print carriage to a

predefined print position when you press the <Tab> key. However, the Intel

Fortran compiler does not interpret the tab character in this way. It treats the

tab character in a statement field the same way it treats a blank character. In

the source listing that the compiler produces, the tab causes the character

that follows to be printed at the next tab stop (usually located at columns 9,

17, 25, 33, and so on).

If you use the sequence number field, do not use tabs anywhere in the source line, or the compiler may interpret the sequence numbers

as part of the statement field in your program.

Tab Format
Fixed Format

20

Source Code Useable for All Source Forms

Blanks Treat as significant

Statement labels Place in column positions 1 through 5 (or before the first tab character)

Statements Start in column position 7 (or after the first tab character)

Comment indicator Use only !. Place anywhere except in column position 6 (or immediately after the first tab

character)

Continuation

indicator

Use only &. Place in column position 73 of the initial line and each continuation line, and in

column 6 of each continuation line (no tab character can precede the ampersand in column 6)

To write source code that is useable for all source forms (free, fixed, or tab), follow these rules:

Column:

12345678... 73

__

! Define the user function MY_SIN

DOUBLE PRECISION FUNCTION MY_SIN(X)

MY_SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &

& - X**7/FACTOR(7)

CONTAINS

INTEGER FUNCTION FACTOR(N)

FACTOR = 1

DO 10 I = N, 1, -1

10 FACTOR = FACTOR * I

END FUNCTION FACTOR

END FUNCTION MY_SIN

The following example is valid for all source forms:

21

Intrinsic Data Types

• INTEGER

kind parameters are available：

• INTEGER([KIND=]1) or INTEGER*1

• INTEGER([KIND=]2) or INTEGER*2

• INTEGER([KIND=]4) or INTEGER*4

• INTEGER([KIND=]8) or INTEGER*8

• REAL

kind parameters are available：

• REAL([KIND=]4) or REAL*4

• REAL([KIND=]8) or REAL*8

• REAL([KIND=]16) or REAL*16

• DOUBLE PRECISION

No kind parameter is permitted for data declared
with type DOUBLE PRECISION. This data type is
the same as REAL([KIND=]8).

•COMPLEX

kind parameters are available：

• COMPLEX([KIND=]4) or COMPLEX*8

• COMPLEX([KIND=]8) or COMPLEX*16

• COMPLEX([KIND=]16) or COMPLEX*32
•DOUBLE COMPLEX

No kind parameter is permitted for data declared with type DOUBLE COMPLEX. This data type

is the same as COMPLEX([KIND=]8).

•LOGICAL

kind parameters are available：

• LOGICAL([KIND=]1) or LOGICAL*1

• LOGICAL([KIND=]2) or LOGICAL*2

• LOGICAL([KIND=]4) or LOGICAL*4

• LOGICAL([KIND=]8) or LOGICAL*8
•CHARACTER

There is one kind parameter available for data of type character: CHARACTER([KIND=]1).

•BYTE

This is a 1-byte value; the data type is equivalent to INTEGER([KIND=]1).

INTEGER, PARAMETER:: MY_INT_KIND = SELECTED_INT_KIND(9)

...

INTEGER(MY_INT_KIND) :: J

...
22

Portable program

The intrinsic function KIND can be used to determine the kind type parameter of a representation method.

For more portable programs, should not use the forms INTEGER([KIND=]n) or REAL([KIND=]n), should

instead define a PARAMETER constant using the SELECTED_INT_KIND or SELECTED_REAL_KIND

function, whichever is appropriate. For example, the following statements define a PARAMETER constant for

an INTEGER kind that has 9 digits:

INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)

...

INTEGER(MY_INT_KIND) :: J

...

result = SELECTED_INT_KIND (r)

r: (Input) Must be scalar and of type integer.

• The result is a scalar of type default integer. The result has a value equal to the value of the kind parameter of the

integer data type that represents all values n in the range of values n with -10r< n < 10r.

• If no such kind type parameter is available on the processor, the result is -1. If more than one kind type parameter

meets the criteria, the value returned is the one with the smallest decimal exponent range.

i = SELECTED_INT_KIND(6) ! returns 4

i = SELECTED_INT_KIND(8) ! returns 4

i = SELECTED_INT_KIND(3) ! returns 2

i = SELECTED_INT_KIND(10) ! returns 8

i = SELECTED_INT_KIND(20) ! returns -1 because 10**20 ! is bigger than 2**63

23

Integer Data Types

n Is an initialization expression that evaluates to kind 1, 2, 4, or 8.

Integer data types can be specified as follows:

INTEGER

INTEGER([KIND=]n)

INTEGER*n

If a kind parameter is specified, the integer has the kind specified. If a kind parameter is not specified, integer constants are interpreted as

follows:

• If the integer constant is within the default integer kind range, the kind is default integer.

• If the integer constant is outside the default integer kind range, the kind of the integer constant is the smallest integer kind that

holds the constant.

Default integer is affected by compiler option integer-size, the INTEGER compiler directive, and the OPTIONS statement.

INTEGER, DIMENSION(:), POINTER :: days, hours

INTEGER(2), POINTER :: k, limit

INTEGER(1), DIMENSION(10) :: min

INTEGER days, hours

INTEGER(2) k, limit

INTEGER(1) min

DIMENSION days(:), hours(:), min (10)

POINTER days, hours, k, limit

INTEGER I, X

READ (*,*) I

IF (I) THEN

X = 1

END IF

An entity-oriented example:
An attribute-oriented example:

entity -> ::

An integer can be used in certain cases when a

logical value is expected, such as in a logical

expression evaluating a condition, as in the
following:

24

Integer Constants

s Is a sign; required if negative (-), optional if positive (+).

n Is a decimal digit (0 through 9). Any leading zeros are ignored.

k Is the optional kind parameter: 1 for INTEGER(1), 2 for INTEGER(2), 4 for INTEGER(4), or 8 for

INTEGER(8). It must be preceded by an underscore (_).

An integer constant is a whole number with no decimal point. It can have a leading sign and

is interpreted as a decimal number.

Integer constants take the following form:

[s]n[n...][_k]

Valid Integer (base 10) Constants

0

-127

+32123

47_2

Invalid Integer (base 10) Constants

999999999999999999

9

Number too large.

3.14 Decimal point not allowed; this is a

valid REAL constant.

32,767 Comma not allowed.

33_3 3 is not a valid kind type for

integers. 25

Integer Constants

Integer constants are interpreted as decimal values (base 10) by default. To specify a constant that

is not in base 10, use the following extension syntax:

[s] [[base] #] nnn...

s Is an optional plus (+) or minus (-) sign.

base Is any constant from 2 through 36.

If base is omitted but # is specified, the integer is interpreted in base 16. If both base and # are omitted, the integer

is interpreted in base 10.

For bases 11 through 36, the letters A through Z represent numbers greater than 9. For example, for base 36, A

represents 10, B represents 11, C represents 12, and so on, through Z, which represents 35. The case of the letters

is not significant.

The value of nnn cannot be bigger than 2**31-1. The value is extended with zeroes on the left or truncated on the

left to make it the correct size. A minus sign for s negates the value.

I = 2#1111001111001111001111

m = 7#45644664

J = +8#17171717

K = #3CF3CF

n = +17#2DE110

L = 3994575

index = 36#2DM8F

I = -2#1111001111001111001111

m = -7#45644664

J = -8#17171717

K = -#3CF3CF

n = -17#2DE110

L = -3994575

index = -36#2DM8F

The following seven integers are all assigned
a value equal to 3,994,575 decimal:

The following seven integers are all assigned

a value equal to -3,994,575 decimal:

26

Real Data Types

Real data types can be specified as follows:

• REAL

• REAL([KIND=]n)

• REAL*n

• DOUBLE PRECISION

n Is an initialization expression that evaluates to kind 4, 8, or 16.

• If a kind parameter is specified, the real constant has the kind specified. If a kind parameter is not specified, the kind is default real.

• Default real is affected by compiler options specifying real size and by the REAL directive.

• The default KIND for DOUBLE PRECISION is affected by compiler option double-size. If this compiler option is not specified, default

DOUBLE PRECISION is REAL(8).

• No kind parameter is permitted for data declared with type DOUBLE PRECISION.

• The intrinsic inquiry function KIND returns the kind type parameter. The intrinsic inquiry function RANGE returns the decimal

exponent range, and the intrinsic function PRECISION returns the decimal precision. You can use the intrinsic

function SELECTED_REAL_KIND to find the kind values that provide a given precision and exponent range.

REAL (KIND = high), OPTIONAL :: testval

REAL, SAVE :: a(10), b(20,30)

REAL (KIND = high) testval

REAL a(10), b(20,30)

OPTIONAL testval

SAVE a, b

An entity-oriented example: An attribute-oriented example:

27

General Rules for Real Constants

A real constant approximates the value of a mathematical real number.
The value of the constant can be positive, zero, or negative.

The following is the general form of a real constant with no exponent part:

• [s]n[n...][_k]

• A real constant with an exponent part has one of the following forms:

• [s]n[n...]E[s]nn...[_k]

• [s]n[n...]D[s]nn...

• [s]n[n...]Q[s]nn...

s Is a sign; required if negative (-), optional if positive (+).

n Is a decimal digit (0 through 9). A decimal point must appear if the

real constant has no exponent part.

k Is the optional kind parameter: 4 for REAL(4), 8 for REAL(8), or

16 for REAL(16). It must be preceded by an underscore (_).

28

REAL(4) Constants

A single-precision REAL constant occupies four bytes of memory. The
number of digits is unlimited, but typically only the leftmost 7 digits are
significant.

Valid REAL(4) Constants

3.14159

3.14159_4

621712._4

-.00127

+5.0E3

2E-3_4

Invalid REAL(4) Constants

1,234,567. Commas not allowed.

325E-47 Too small for REAL; this is a valid DOUBLE PRECISION

constant.

-47.E47 Too large for REAL; this is a valid DOUBLE PRECISION

constant.

625._6 6 is not a valid kind for reals.

100 Decimal point is missing; this is a valid integer constant.

$25.00 Special character not allowed.

29

REAL(8) or DOUBLE PRECISION Constants

• A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of a REAL(4) number,
and greater range.

• A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of digits
that precede the exponent is unlimited, but typically only the leftmost 15 digits are significant.

• IEEE* binary64 format is used.

• Note that compiler option double-size can affect DOUBLE PRECISION data.

• The default KIND for DOUBLE PRECISION is affected by compiler option double-size.

Valid REAL(8) or DOUBLE PRECISION Constants

123456789D+5

123456789E+5_8

+2.7843D00

-.522D-12

2E200_8

2.3_8

3.4E7_8

Invalid REAL(8) or DOUBLE PRECISION Constants

-.25D0_2 2 is not a valid kind for reals.

+2.7182812846182 No D exponent designator is present; this is a valid

single-precision constant.

123456789.D400 Too large for any double-precision format.

123456789.D-400 Too small for any double-precision format.

30

REAL(16) Constants

• A REAL(16) constant has more than four times the accuracy of a REAL(4)
number, and a greater range.

• A REAL(16) constant occupies 16 bytes of memory. The number of digits
that precede the exponent is unlimited, but typically only the leftmost 33
digits are significant.

• IEEE* binary128 format is used.

Valid REAL(16)

Constants

123456789Q4000

-1.23Q-400

+2.72Q0

1.88_16

Invalid REAL(16)

Constants

1.Q5000 Too large.

1.Q-5000 Too small.

31

Complex Data Types

Complex data types can be specified as follows:

• COMPLEX

• COMPLEX([KIND=]n)

• COMPLEX*s

• DOUBLE COMPLEX

n Is an initialization expression that evaluates to kind 4, 8, or

16.

s Is 8, 16, or 32. COMPLEX(4) is specified as COMPLEX*8;

COMPLEX(8) is specified as COMPLEX*16;

COMPLEX(16) is specified as COMPLEX*32.

• If a kind parameter is specified, the complex constant has the kind specified. If no kind parameter is specified, the kind of both parts

is default real, and the constant is of type default complex.

• Default real is affected by compiler option real-size and by the REAL directive.
• The default KIND for DOUBLE COMPLEX is affected by compiler option double-size. If the compiler option is not specified,

default DOUBLE COMPLEX is COMPLEX(8).

• No kind parameter is permitted for data declared with type DOUBLE COMPLEX.

• A complex number of any kind is made up of a real part and an imaginary part. The REAL and AIMAG intrinsic functions return the

real and imaginary parts of a complex number respectively. The CMPLX intrinsic constructs a complex number from two real

numbers. The %re and %im complex part designators access the real and imaginary parts of a complex number respectively. 32

Complex Data Types: Examples

COMPLEX (4), DIMENSION (8) :: cz, cq COMPLEX(4) cz, cq

DIMENSION(8) cz, cq

COMPLEX (4) :: ca = (1.0, 2.0)

REAL (4) :: ra = 3.0, rb = 4.0

PRINT *, REAL (ca), ca%RE ! prints 1.0, 1.0

PRINT *, AIMAG (ca), ca%IM ! prints 2.0, 2.0

PRINT *, CMPLX (ra, rb) ! prints (3.0, 4.0)

ca = CMPLX (ra, AIMAG (ca))

PRINT *, ca ! prints (3.0, 2.0)

ca%im = rb

PRINT *, ca ! prints (3.0, 4.0)

An entity-oriented example: An attribute-oriented example:

The following shows an example of the parts of a complex number:

33

General Rules for Complex Constants

• A complex constant approximates the value of a mathematical complex
number. The constant is a pair of real or integer values, separated by a
comma, and enclosed in parentheses. The first constant represents the real
part of that number; the second constant represents the imaginary part.

• The following is the general form of a complex constant: (c, c)

c Is as follows:

• For COMPLEX(4) constants, c is an integer or REAL(4) constant.

• For COMPLEX(8) constants, c is an integer, REAL(4) constant, or DOUBLE PRECISION

(REAL(8)) constant. At least one of the pair must be DOUBLE PRECISION.

• For COMPLEX(16) constants, c is an integer, REAL(4) constant, REAL(8) constant, or

REAL(16) constant. At least one of the pair must be a REAL(16) constant.

34

COMPLEX(4) Constants
• A COMPLEX(4) constant is a pair of integer or single-precision real constants that

represent a complex number.

• A COMPLEX(4) constant occupies eight bytes of memory and is interpreted as a
complex number.

• If the real and imaginary part of a complex literal constant are both real, the kind
parameter value is that of the part with the greater decimal precision.

• The rules for REAL(4) constants apply to REAL(4) constants used in COMPLEX
constants.

• The REAL(4) constants in a COMPLEX constant have IEEE* binary32 format.

• Note that compiler option real-size can affect REAL data.

Valid COMPLEX(4) Constants

(1.7039,-1.70391)

(44.36_4,-12.2E16_4)

(+12739E3,0.)

(1,2)

Invalid COMPLEX(4) Constants

(1.23,) Missing second integer or single-

precision real constant.

(1.0, 2H12) Hollerith constant not allowed.

35

COMPLEX(8) or DOUBLE COMPLEX Constants
• A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that represents a complex number.

One of the pair must be a double-precision real constant, the other can be an integer, single-precision real,
or double-precision real constant.

• A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is interpreted as a
complex number.

• The rules for DOUBLE PRECISION (REAL(8)) constants also apply to the double precision portion of
COMPLEX(8) or DOUBLE COMPLEX constants.

• The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE COMPLEX constant have IEEE*
binary64 format.

• The default KIND for DOUBLE COMPLEX is affected by compiler option double-size.

• Note that compiler option real-size can affect REAL data.

Valid COMPLEX(8) or DOUBLE COMPLEX Constants

(1.7039,-1.7039D0)

(547.3E0_8,-1.44_8)

(1.7039E0,-1.7039D0)

(+12739D3,0.D0)

Invalid COMPLEX(8) or DOUBLE COMPLEX Constants

(1.23D0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1,1.2) Neither constant is DOUBLE PRECISION;

this is a valid single-precision constant.

36

COMPLEX(16) Constants

• A COMPLEX(16) constant is a pair of constants that represents a complex number. One
of the pair must be a REAL(16) constant, the other can be an integer, single-precision
real, double-precision real, or REAL(16) constant.

• A COMPLEX(16) constant occupies 32 bytes of memory and is interpreted as a
complex number.

• The rules for REAL(16) constants apply to REAL(16) constants used in COMPLEX
constants.

• The REAL(16) constants in a COMPLEX constant have IEEE* binary128 format.

• Note that compiler option real-size can affect REAL data.

Valid COMPLEX(16) Constants

(1.7039,-1.7039Q2)

(547.3E0_16,-1.44)

(+12739D3,0.Q0)

Invalid COMPLEX(16) Constants

(1.23Q0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1.7039E0,-

1.7039D0)

Neither constant is REAL(16); this is a

valid double-precision constant. 37

Logical Data Types

Logical data types can be specified as follows:

• LOGICAL

• LOGICAL([KIND=]n)

• LOGICAL*n n Is an initialization expression that evaluates to kind 1, 2, 4, or 8.

LOGICAL, ALLOCATABLE :: flag1, flag2

LOGICAL (KIND = byte), SAVE :: doit, dont

LOGICAL flag1, flag2

LOGICAL (KIND = byte) doit, don’t

ALLOCATABLE flag1, flag2

SAVE doit, dont

An entity-oriented example: An attribute-oriented example:

38

Logical Constants

A logical constant represents only the logical values true or false, and
takes one of the following forms:

• .TRUE.[_k]

• .FALSE.[_k]
k Is the optional kind parameter: 1 for LOGICAL(1), 2 for LOGICAL(2), 4 for

LOGICAL(4), or 8 for LOGICAL(8). It must be preceded by an underscore (

_).

• The numeric value of .TRUE. and .FALSE. can be -1 and 0 or 1 and 0 depending on

compiler option fpscomp [no]logicals.

• Logical data can take on integer data values.

• Logical data type ranges correspond to their comparable integer data type ranges.

For example, the LOGICAL(2) range is the same as the INTEGER(2) range.

39

Character Data Type

The character data type can be specified as follows:

• CHARACTER

• CHARACTER([LEN=] len)

• CHARACTER(LEN= len, KIND= n)

• CHARACTER(len, [KIND=] n)

• CHARACTER(KIND= n [, LEN= len])

• CHARACTER* len [,]

n Is an initialization expression that evaluates to kind 1.

len Is a string length (not a kind).

40

Character Constants

A character constant is a character string enclosed in delimiters
(apostrophes or quotation marks). It takes one of the following forms:

• [k_]'[ch...]' [C]

• [k_]"[ch...]" [C]

k Is the optional kind parameter: 1 (the default). It must be followed by an underscore (_). Note that

in character constants, the kind must precede the constant.

ch Is an ASCII character.

C Is a C string specifier. C strings can be used to define NUL-terminated strings.

• The value of a character constant is the string of characters between the delimiters. The value does

not include the delimiters, but does include all blanks or tabs within the delimiters.
• If a character constant is delimited by apostrophes, use two consecutive apostrophes ('') to place

an apostrophe character in the character constant.

• If a character constant is delimited by quotation marks, use two consecutive quotation marks ("") to

place a quotation mark character in the character constant.

• The length of the character constant is the number of characters between the delimiters, but two

consecutive delimiters are counted as one character.

• The length of a character constant must be in the range of 0 to 7188. Each character occupies one

byte of memory.

• If a character constant appears in a numeric context (such as an expression on the right side of an

arithmetic assignment statement), it is considered a Hollerith constant.

• A zero-length character constant is represented by two consecutive apostrophes or quotation marks.

Valid Character Constants

"WHAT KIND TYPE? "

'TODAY''S DATE IS: '

"The average is: "

''

Invalid Character Constants

'HEADINGS No trailing apostrophe.

'Map

Number:"

Beginning delimiter

does not match ending

delimiter. 41

C Strings in Character Constants

• String values in the C language are terminated with null
characters (CHAR(0)) and can contain nonprintable
characters (such as backspace).

• Nonprintable characters are specified by escape sequences.
An escape sequence is denoted by using the backslash (\) as
an escape character, followed by a single character
indicating the nonprintable character desired.

• This type of string is specified by using a standard string
constant followed by the character C. The standard string
constant is then interpreted as a C-language constant.
Backslashes are treated as escapes, and a null character is
automatically appended to the end of the string (even if the
string already ends in a null character).

• The right table shows the escape sequences that are allowed
in character constants.

Escape

Sequence

Represents

\a or \A A bell

\b or \B A backspace

\f or \F A formfeed

\n or \N A new line

\r or \R A carriage return

\t or \T A horizontal tab

\v or \V A vertical tab

\xhh or \Xhh A hexadecimal bit

pattern

\ooo An octal bit pattern

\0 A null character

\\ A backslash

42

C Strings in Character Constants

• If a string contains an escape sequence that isn't in this table, the backslash is ignored.

• A C string must also be a valid Fortran string. If the string is delimited by apostrophes,

apostrophes in the string itself must be represented by two consecutive apostrophes ('').

• For example, the escape sequence \'string causes a compiler error because Fortran

interprets the apostrophe as the end of the string. The correct form is \''string.

• If the string is delimited by quotation marks, quotation marks in the string itself must be

represented by two consecutive quotation marks ("").

• The sequences \ooo and \xhh allow any ASCII character to be given as a one- to three-digit

octal or a one- to two-digit hexadecimal character code. Each octal digit must be in the range

0 to 7, and each hexadecimal digit must be in the range 0 to F. For example, the C

strings '\010'C and '\x08'C both represent a backspace character followed by a null

character.

• The C string '\\abcd'C is equivalent to the string '\abcd' with a null character

appended. The string ''C represents the ASCII null character.

43

Character Substrings

A character substring is a contiguous segment of a character string. It
takes one of the following forms:

• v ([e1]:[e2])

• a (s [, s] . . .) ([e1]:[e2])

v Is a character scalar constant, or the name of a character

scalar variable or character structure component.

e1 Is a scalar integer (or other numeric) expression specifying

the leftmost character position of the substring;

the starting point.

e2 Is a scalar integer (or other numeric) expression specifying

the rightmost character position of the substring;

the ending point.

a Is the name of a character array.

s Is a subscript expression.
• Character positions within the parent character string are numbered from left to right, beginning at 1.

• If the value of the numeric expression e1 or e2 is not of type integer, it is converted to integer before use (any fractional parts are truncated).

• If e1 is omitted, the default is 1. If e2 is omitted, the default is len. For example, NAMES(1,3)(:7) specifies the substring starting with the first character position and

ending with the seventh character position of the character array element NAMES(1,3).

CHARACTER*8 C, LABEL

LABEL = 'XVERSUSY’
C = LABEL(2:7)

LABEL(2:7) specifies the substring starting with the second character position and ending with

the seventh character position of the character variable assigned to LABEL, so C has the
value 'VERSUS'. 44

POINTER - Fortran

Statement and Attribute: Specifies that an object or a procedure is a pointer (a dynamic variable). A pointer does not contain data,

but points to a scalar or array variable where data is stored. A pointer has no initial storage set aside for it; memory storage is created for the

pointer as a program runs.

The POINTER attribute can be specified in a type declaration statement or a POINTER statement, one of the following forms:

Type Declaration Statement:

type,[att-ls,] POINTER [, att-ls] :: ptr[(d-spec)][, ptr[(d-spec)]]...

Statement:

POINTER [::]ptr[(d-spec)][, ptr[(d-spec)]] ...

type-spec Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

ptr Is the name of the pointer. The pointer cannot

be declared with the INTENT or

PARAMETER attributes.

d-spec (Optional) Is a deferred-shape specification (:

[, :] ...). Each colon represents a dimension of

the array.

REAL, POINTER :: arrow (:)

REAL, ALLOCATABLE, TARGET :: bullseye (:,:)

! The following statement associates the pointer with an unused

! block of memory.

ALLOCATE (arrow (1:8), STAT = ierr)

IF (ierr.eq.0) WRITE (*,'(/1x,a)') 'ARROW allocated’
arrow = 5.

WRITE (*,'(1x,8f8.0/)') arrow

ALLOCATE (bullseye (1:8,3), STAT = ierr)

IF (ierr.eq.0) WRITE (*,*) 'BULLSEYE allocated’
bullseye = 1.

bullseye (1:8:2,2) = 10.

WRITE (*,'(1x,8f8.0)') bullseye

! The following association breaks the association with the first

! target, which being unnamed and unassociated with other pointers,

! becomes lost. ARROW acquires a new shape.

arrow => bullseye (2:7,2)

WRITE (*,'(/1x,a)') 'ARROW is repointed & resized, all the 5s are lost’
WRITE (*,'(1x,8f8.0)') arrow

NULLIFY (arrow)

IF (.NOT.ASSOCIATED(arrow)) WRITE (*,'(/a/)') ' ARROW is not pointed’
DEALLOCATE (bullseye, STAT = ierr)

IF (ierr.eq.0) WRITE (*,*) 'Deallocation successful.’
END

• Fortran pointers: POINTER [::]ptr[(d-spec)]

• Integer pointers: POINTER (pointer, pointee)

Fortran pointers are not the same as integer pointers

45

POINTER - Integer

pointer Is a variable whose value is used as the address of the pointee.

pointee Is a variable; it can be an array name or array specification. It can also be a procedure

named in an EXTERNAL statement or in a specific (non-generic) procedure interface

block.

Establishes pairs of objects and pointers, in which each pointer contains the

address of its paired object. This statement is different from the Fortran

POINTER statement.

POINTER (pointer,pointee) [,(pointer,pointee)] . . .

INTEGER I(10)

INTEGER I1(10) /10*10/

POINTER (P,I)

P = %LOC(I1)

I(2) = I(2) + 1

INTEGER I(10)

POINTER (P,I)

P = MALLOC(40)

I = 10

I(2) = I(2) + 1

Using %LOC Using MALLOC

POINTER (p, k)

INTEGER j(2)

! This has the same effect as j(1) = 0, j(2) = 5

p = LOC(j)

k = 0

p = p + SIZEOF(k)

! 4 for 4-byte integer

k = 5

Example

46

Derived Data Types

TYPE REPORT

CHARACTER (LEN=20) REPORT_NAME

INTEGER DAY

CHARACTER (LEN=3) MONTH

INTEGER :: YEAR = 1995 ! Only component with default

END TYPE REPORT ! initialization

TYPE (REPORT), PARAMETER :: NOV_REPORT = REPORT ("Sales", 15, "NOV", 1996)

TYPE MGR_REPORT

TYPE (REPORT) :: STATUS = NOV_REPORT

INTEGER NUM

END TYPE MGR_REPORT

TYPE (MGR_REPORT) STARTUP

STARTUP%NUM = 20

Components are accessed using %:

47

Binary, Octal, Hexadecimal, and Hollerith Constants

A binary constant:

• B'd[d...]'

• B"d[d...]"

d s a binary (base 2) digit (0
or 1).

You can specify up to 128 binary
digits in a binary constant.

Valid Binary Constants

B'0101110'

B"1"

Invalid Binary Constants

B'0112' The character 2 is invalid.

B10011' No apostrophe after the B.

"1000001" No B before the first

quotation mark.

An octal constant:

• O'd[d...]'

• O"d[d...]"

d is an octal (base 8) digit
(0 through 7).

You can specify up to 128 bits
(43 octal digits) in octal constants.

Valid Octal Constants

O'07737'

O"1"

Invalid Octal Constants

O'7782' The character 8 is invalid.

O7772' No apostrophe after the O.

"0737" No O before the first quotation

mark.

A hexadecimal constant:

• Z'd[d...]'

• Z"d[d...]“

d s a hexadecimal (base 16) digit
(0 through 9, or an uppercase or
lowercase letter in the range of A
to F).

You can specify up to 128 bits
(32 hexadecimal digits) in
hexadecimal constants

Invalid Hexadecimal Constants

Z'999.' Decimal not allowed.

ZF9" No quotation mark after the Z.

Valid Hexadecimal Constants

Z'AF9730'

Z"FFABC"

Z'84'

48

Hollerith Constants

• A Hollerith constant is a string of printable ASCII characters preceded by
the letter H. Before the H, there must be an unsigned, nonzero default
integer constant stating the number of characters in the string (including
blanks and tabs).

• Hollerith constants are strings of 1 to 2000 characters. They are stored as
byte strings, one character per byte.

Valid Hollerith Constants

16HTODAY'S DATE IS:

1HB

4H ABC

Invalid Hollerith Constants

3HABCD Wrong number of characters.

0H Hollerith constants must contain at least

one character.

49

Enumerations and Enumerators

An enumeration defines the name of a group of related values and the name of each
value within the group. It takes the following form:

ENUM, BIND(C)

ENUMERATOR [::] c1 [= expr][, c2 [= expr]]...

[ENUMERATOR [::] c3 [= expr][, c4 [= expr]]...]...

END ENUM c1,c2,c3,c4 Is the name of the enumerator being defined.

expr Is an optional scalar integer initialization expression specifying

the value for the enumerator.

ENUM, BIND(C)

ENUMERATOR ORANGE

ENUMERATOR :: RED = 5, BLUE = 7

ENUMERATOR GREEN

END ENUM

INTEGER(SELECTED_INT_KIND(4)), PARAMETER :: ORANGE = 0, RED = 5, BLUE = 7, GREEN = 8

The order in which the enumerators appear in an enumerator definition is significant.

If you do not explicitly assign each enumerator a value by specifying an expr, the compiler assigns a value according to the following rules:

•If the enumerator is the first enumerator in the enumerator definition, the enumerator has the value 0.

•If the enumerator is not the first enumerator in the enumerator definition, its value is the result of adding one to the value of the immediately

preceding enumerator in the enumerator definition.

be equivalent to the enumeration definition

50

Implicit Typing Rules

• I-N rules, by default:
• all scalar variables with names beginning with I, J, K, L, M, or N are assumed to be default

integer variables.

• Scalar variables with names beginning with any other letter are assumed to be default real
variables.

• Names beginning with a dollar sign ($) are implicitly INTEGER.

• Can override the default data type implied in a name by specifying data type in either
an IMPLICIT statement or a type declaration statement.

• Advice: IMPLICIT NONE
• The IMPLICIT NONE statement disables all implicit typing defaults. When IMPLICIT NONE

is used, all names in a program unit must be explicitly declared. An IMPLICIT NONE statement
must precede any PARAMETER statements, and there must be no other IMPLICIT statements
in the scoping unit.

• To receive diagnostic messages when variables are used but not declared, you can specify
compiler option warn declarations instead of using IMPLICIT NONE.

Real Variables Integer Variables

ALPHA JCOUNT

BETA ITEM_1

TOTAL_NUM NTOTAL

51

Array

INTEGER, DIMENSION(2:11,3) :: L ! Specifies the type and

! dimensions of array L

REAL A(10)

REAL, ALLOCATABLE :: E(:,:)

L = 10 ! The value 10 is assigned to all the

! elements in array L

WRITE *, L ! Prints all the elements in array L

A(1:5:2) = 3.0 ! Sets elements A(1), A(3), A(5) to 3.0

A(:5:2) = 3.0 ! Same as the previous statement

! because the lower bound defaults to 1

A(2::3) = 3.0 ! Sets elements A(2), A(5), A(8) to 3.0

! The upper bound defaults to 10

A(7:9) = 3.0 ! Sets elements A(7), A(8), A(9) to 3.0

! The stride defaults to 1

A(:) = 3.0 ! Same as A = 3.0; sets all elements of

! A to 3.0

...

IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7))

...

DEALLOCATE (E) ! Deallocates array E

WHERE(A .NE. 0) C = B/A !only for none-zero elements of A

Vector Subscripts

REAL A(3, 3), B(4)

INTEGER K(4)

! Vector K has repeated values，Syntax

! (/.../) denotes an array constructor

K = (/3, 1, 1, 2/)

! Sets all elements of A to 5.0

A = 5.0

B = A(3, K) !B is A(3,3) A(3,1) A(3,1) A(3,2)

The elements of an array are stored as a linear sequence of values. A multidimensional array is stored so

that the leftmost subscripts vary most rapidly(Column-major order, contrary to C/C++ Row-major order).

Fortran/MATLAB/IDL

C/C++

52

Array Constructors

INTEGER C(4),C2(20)

TYPE EMPLOYEE

INTEGER ID

CHARACTER(LEN=30) NAME

END TYPE EMPLOYEE

TYPE(EMPLOYEE) CC_4T(4) !Derived Data Type Array.

CC_4T = (/EMPLOYEE(2732,"JONES"),EMPLOYEE(0217,"LEE"), &

EMPLOYEE(1889,"RYAN"), EMPLOYEE(4339,"EMERSON")/)

C = (/4,8,7,6/) ! A scalar expression

C = [4,8,7,6]

C = (/B(I, 1:5), B(I:J, 7:9)/) ! An array expression

C = (/(I, I=1, 4)/) ! An implied-DO loop

C2= (/4, A(1:5), (I, I=1, 4), 7/)

53

Array operator
Some intrinsic functions to perform some operations on entire arrays:

• +, -, *, /, SIN, COS, WHERE, ABS …

• SUM: not same as A+B

• Returns the sum of all the elements in an entire array or in a specified dimension of an array.

• DOT_RRODUCT: not same as A*B

• Performs dot-product multiplication of numeric or logical vectors (rank-one arrays).

• PRODUCT: not same as A*B

• Returns the product of all the elements in an entire array or in a specified dimension of an array.

• MATMUL:

• Performs matrix multiplication of numeric or logical matrices.

• MAXVAL:

• Returns the maximum value of all elements in an array, a set of
elements in an array, or elements in a specified dimension of an array.

• MAXLOC:

• Returns the minimum value of all elements in an array, a set of
elements in an array, or elements in a specified dimension of an array.

• MINVAL:

• Returns the minimum value of all elements in an array, a set of
elements in an array, or elements in a specified dimension of an array.

• MINLOC:

• Returns the minimum value of all elements in an array, a set of
elements in an array, or elements in a specified dimension of an array.

• TRANSPOSE:

• Transposes an array of rank two.

• RESHAPE:

• Constructs an array with a different shape from the argument array.

INTEGER array (2, 3)

INTEGER AR1(3), AR2(2)

array = RESHAPE((/1, 4, 2, 5, 3, 6/),(/2,3/))

! array is 1 2 3

! 4 5 6

AR1 = PRODUCT(array, DIM = 1)

! returns [4 10 18]

AR2 = PRODUCT(array, MASK =array .LT. 6, DIM = 2)

! returns [6 20]

AR2=SHAPE(array) ! Return AR2=(/2, 3/)

END

54

Making Arrays and Substrings Equivalent

DIMENSION TABLE (2,2), TRIPLE (2,2,2)

EQUIVALENCE(TABLE(2,2), TRIPLE(1,2,2))

Array TRIPLE Array TABLE

Array Element Element Number Array Element Element Number

TRIPLE(1,1,1) 1

TRIPLE(2,1,1) 2

TRIPLE(1,2,1) 3

TRIPLE(2,2,1) 4 TABLE(1,1) 1

TRIPLE(1,1,2) 5 TABLE(2,1) 2

TRIPLE(2,1,2) 6 TABLE(1,2) 3

TRIPLE(1,2,2) 7 TABLE(2,2) 4

TRIPLE(2,2,2) 8

CHARACTER NAME*16, ID*9

EQUIVALENCE(NAME(10:13), ID(2:5))

55

Expressions and Assignment Statements

• Numeric Expressions

Operator Function

** Exponentiation, A
E

is A**E

* Multiplication

/ Division

+ Addition or unary plus (identity)

- Subtraction or unary minus (negation)

Character Expressions

A character expression consists of a character operator (//) that

concatenates two operands of type character.

Parentheses do not affect the evaluation of a character expression; the

following character expressions are equivalent 'ABCDEF':

A=('ABC'//'DE')//'F'

A='ABC'//('DE'//'F')

A='AABC'//'DE'//'F'

Relational Expressions

Operator Relationship

.LT. or < Less than

.LE. or <= Less than or equal to

.EQ. or == Equal to

.NE. or /= Not equal to

.GT. or > Greater than

.GE. or >= Greater than or equal

to

Logical Expressions

Operato

r
Example Meaning

.AND. A .AND. B
Logical conjunction: the expression is true if

both A and B are true.

.OR. A .OR. B

Logical disjunction (inclusive OR): the

expression is true if either A, B, or both, are

true.

.NEQV. A .NEQV. B

Logical inequivalence (exclusive OR): the

expression is true if either A or B is true, but

false if both are true.

.XOR. A .XOR. B Same as .NEQV.

.EQV. A .EQV. B
Logical equivalence: the expression is true if

both A and B are true, or both are false.

56

Summary of Operator Precedence

Category Operator Precedence

Defined Unary Operators Highest

Numeric ** .

Numeric * or / .

Numeric Unary + or - .

Numeric Binary + or - .

Character // .

Relational .EQ., .NE., .LT., .LE., .GT., .GE., = =, /=, <, <=, >, >= .

Logical .NOT. .

Logical .AND. .

Logical .OR. .

Logical .XOR., .EQV., .NEQV. .

Defined Binary Operators Lowest
57

DO, DO WHILE and GO TO loop
DO loop repeats calculation over range of indices

DO WHILE (LINE(I:I) .EQ. ' ')

I = I + 1

END DO

DO

READ *, N

IF (N == 0) STOP

If(N==2) CYCLE ! If true, the next statement is omitted

! from the loop and the loop is tested again.

CALL SUBN

END DO

DO 20 I = 1, N

DO 20 J = 1 + I, N

20 RESULT(I,J) = 1.0 / REAL(I + J)

DO J = 1, 10, 2

DO I = 1, 10, 2

A(I,J) = B(I,J) + C(I,J)

ENDDO

ENDDO

! A=B+C !Matrix operation directly, same as the up 2 do loops

LOOP_1: DO I = 1, N

A(I) = C * B(I)

END DO LOOP_1

DO I = 10, -10, -2

100 I = I + 1

…

IF (I < 100) GOTO 100

Fortran

MATLAB

IDL

C/C++

58

SELECT CASE

INTEGER FUNCTION STATUS_CODE (I)

INTEGER I

CHECK_STATUS: SELECT CASE (I)

CASE (:-1)

STATUS_CODE = -1

CASE (0)

STATUS_CODE = 0

CASE (1:)

STATUS_CODE = 1

END SELECT CHECK_STATUS

END FUNCTION STATUS_CODE

SELECT CASE (J)

CASE (1, 3:7, 9) ! Values: 1, 3, 4, 5, 6, 7, 9

CALL SUB_A

CASE DEFAULT

CALL SUB_B

END SELECT

59

IF-THEN-ELSE

IF (X < 0.0) Y=1

IF (X > 0.0 .AND. Y > 0.0) THEN

Z = 1.0/(X+Y)

ELSEIF (X < 0.0 .AND. Y < 0.0) THEN

Z = -2.0/(X+Y)

GO TO 200

ELSE

PRINT*, ’ERROR CONDITION1’

ENDIF

200 PRINT*, ’ERROR CONDITION2’

60

Subprograms

• Calculations may be grouped into subroutines and functions to perform specific
tasks such as:

• read or write data

• initialize data

• solve a system of equations

•Function returns a single object (number, array, etc.), and usually does not
alter the arguments

• Fortran uses pass-by-reference; change of variables’ values pass into subprogram will
be changed after returning

• Altering certain argument’s value in a subprogram, considered a “side effect,” is
bad programming practice. Changing a pre-defined constant is an example. It may
either cause a segmentation fault or worse, the variable got changed.

•Subroutine transfers calculated values (if any) through arguments

61

FUNCTION

•Definition starts with a return type

•End with “end function” analogous to “end program”

•Example: distance between two vectors

•Use:

• Names of dummy arguments don’t have to match actual names

• Function name must be declared in calling routine

REAL :: FAHRENHEIT

REAL FUNCTION FAHRENHEIT(C)

REAL :: C

FAHRENHEIT = (9.0/5.0)*C + 32.0 ! Convert Celsius to Fahrenheit

END FUNCTION FAHRENHEIT

F = FAHRENHEIT(0.0) ! 0 degree Celsius equals 32 degrees fahrenheit

62

SUBROUTINE

• End with “END SUBROUTINE” analogous to “END PROGRAM”

• Distance subroutine

• Use:

CALL TEMP_CONVERSION(c, f)

• As with function, names of dummy arguments don’t have to match actual
names

SUBROUTINE TEMP_CONVERSION(celsius, fahrenheit)

REAL:: celsius, fahrenheit

fahrenheit = (9.0/5.0)*celsius + 32.0

END SUBROUTINE TEMP_CONVERSION

63

SAVE

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

entity Is the name of an object, the name of a procedure pointer, or the name of a common block

enclosed in slashes (/common-block-name/).

Statement and Attribute: Causes the values and definition of objects to be retained after execution of a

RETURN or END statement in a subprogram.

The SAVE attribute can be specified in a type declaration statement or a SAVE statement, and takes one of the

following forms:

Type Declaration Statement:

type,[att-ls,] SAVE [, att-ls] :: entity[, entity] ...

Statement:

SAVE [[::]entity [, entity] ...]

SUBROUTINE TEST()

REAL, SAVE :: X, Y

SAVE B, /BLOCK_B/, C, /BLOCK_D/, E

SUBROUTINE MySub

COMMON /z/ da, in, a, idum(10)

real(8) x,y ...

SAVE x, y, /z/

! alternate declaration

REAL(8), SAVE :: x, y

SAVE /z/

64

BLOCK DATA

Identifies a block-data program unit, which provides initial values for

variables in named common blocks.

BLOCK DATA [name]

[specification-part]

END [BLOCK DATA[name]]

BLOCK DATA BLKDAT

INTEGER S,X

LOGICAL T,W

DOUBLE PRECISION U

DIMENSION R(3)

COMMON /AREA1/R,S,U,T /AREA2/W,X,Y

DATA R/1.0,2*2.0/, T/.FALSE./, U/0.214537D-7/, W/.TRUE./, Y/3.5/

END

65

COMMON

cname (Optional) Is the name of the common block. The name can be omitted for blank common (//).

var-

list

Is a list of variable names, separated by commas.

The variable must not be a dummy argument, allocatable array, automatic object,

function, function result, a variable with the BIND attribute,or entry to a procedure. It

must not have the PARAMETER attribute. If an object of derived type is specified, it

must be a sequence type or a type with the BIND attribute.

Defines one or more contiguous areas, or blocks, of physical

storage (called common blocks) that can be accessed by any of

the scoping units in an executable program(sharing data).

COMMON statements also define the order in which variables

and arrays are stored in each common block, which can

prevent misaligned data items.
COMMON [/[cname]/] var-

list[[,] /[cname]/ var-list]...

SUBROUTINE unit1

REAL(8) x(5)

INTEGER J

CHARACTER str*12

TYPE(member) club(50)

COMMON / blocka / x, j, str, club

...

END

SUBROUTINE unit2

REAL(8) z(5)

INTEGER m

CHARACTER chr*12

TYPE(member) myclub(50)

COMMON / blocka / z, m, chr, myclub

...

END 66

MODULE
• Program units that group variables and subprograms

• Good for global variables (more power then COMMON)

• Checking of subprogram arguments
• If type or number is wrong, linker will yell at you

• Can be convenient to package variables and/or subprograms of a given type

• In program unit that needs to access components of module USE MODULE-NAME

• USE statement must be before IMPLICIT NONE

MODULE MOD_A

INTEGER :: B, C

REAL E(25,5)

END MODULE MOD_A

...

SUBROUTINE SUB_Z

USE MOD_A ! Makes scalar variables B and C, and array

...

! E available to this subroutine

USE MOD_A ONLY: B, E !not use C

IMPLICITE NONE

INTEGER F

END SUBROUTINE SUB_Z

MODULE RESULTS

...

CONTAINS

FUNCTION MOD_RESULTS(X,Y)

! A module procedure

...

END FUNCTION MOD_RESULTS

END MODULE RESULTS

MODULE ARRAY_CALCULATOR

INTERFACE

FUNCTION CALC_AVERAGE(D)

REAL :: CALC_AVERAGE

REAL, INTENT(IN) :: D(:)

END FUNCTION

END INTERFACE

END MODULE ARRAY_CALCULATOR67

INTERFACE

On occasions, you may need to help the compiler a bit on what you are
trying to do with interface

• For C programmers, this is roughly the same as prototype

• Previously, we learn to compute dot product with a function which returns a
scalar. To compute cross product of two cartesian vectors, we need to warn the
compiler ahead of time that the return value is not a scalar

!An interface to an external subroutine SUB1 with header:

!SUBROUTINE SUB1(I1,I2,R1,R2)

!INTEGER I1,I2 !REAL R1,R2

INTERFACE

SUBROUTINE SUB1(int1,int2,real1,real2)

INTEGER int1,int2

REAL real1,real2

END SUBROUTINE SUB1

END INTERFACE

INTEGER int

... 68

Internal Procedures: CONTAINS

Internal procedures are functions or subroutines that

follow a CONTAINS statement in a program unit. The

program unit in which the internal procedure appears is

called its host.

Internal procedures can appear in the main program, in an

external subprogram, or in a module subprogram.

An internal procedure takes the following form:

CONTAINS

internal-subprogram

[internal-subprogram] ...

Internal procedures are the same as external procedures,

except for the following:

•Only the host program unit can use an internal procedure.

•An internal procedure has access to host entities by host

association; that is, names declared in the host program

unit are useable within the internal procedure.

•An internal procedure must not contain an ENTRY

statement.

internal-subprogram Is a function or subroutine subprogram that defines the procedure. An internal subprogram

must not contain any other internal subprograms.

69

program

real a,b,c

call find

print *, c

contains

subroutine find ! Use of internal subroutine

read *, a,b c = sqrt(a**2 + b**2)

end subroutine find

end

PROGRAM COLOR_GUIDE

...

CONTAINS

FUNCTION HUE(BLUE) ! An internal procedure

...

END FUNCTION HUE

END PROGRAM

INTRINSIC

Allows the specific name of an intrinsic procedure to be used as an actual argument.

The INTRINSIC attribute can be specified in a type declaration statement or an INTRINSIC statement, and

takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] INTRINSIC [, att-ls] :: in-pro[, in-pro]...

Statement:
INTRINSIC [::] in-pro[, in-pro] ...

• In a type declaration statement, only functions can be declared INTRINSIC. However, you can use the

INTRINSIC statement to declare subroutines, as well as functions, to be intrinsic.

• The name declared INTRINSIC is assumed to be the name of an intrinsic procedure. If a generic intrinsic

function name is given the INTRINSIC attribute, the name retains its generic properties.

• Some specific intrinsic function names cannot be used as actual arguments.

type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

in-pro Is the name of an intrinsic procedure.

INTRINSIC SIN, COS

REAL X, Y, R

! SIN and COS are arguments to Calc2:

R = Calc2 (SIN, COS)

70

EXTERNAL

• Allows an external procedure, a dummy procedure, a procedure pointer, or a block
data subprogram to be used as an actual argument. (To specify intrinsic procedures
as actual arguments, use the INTRINSIC attribute.)

• The EXTERNAL attribute can be specified in a type declaration statement or an
EXTERNAL statement, and takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] EXTERNAL [, att-ls] :: ex-pro[, ex-pro]...

Statement:

EXTERNAL [::]ex-pro[, ex-pro]...
type Is a data type specifier.

att-ls Is an optional list of attribute specifiers.

ex-pro Is the name of an external (user-supplied) procedure, a dummy procedure, a

procedure pointer, or block data subprogram.

PROGRAM TEST

...

INTEGER, EXTERNAL :: BETA

LOGICAL, EXTERNAL :: COS

...

CALL SUB(BETA) ! External function BETA is an actual argument

71

INCLUDE

INTEGER, PARAMETER :: M=100

REAL, DIMENSION(M) :: X, Y

COMMON X, Y

COMMON.FOR File

Directs the compiler to stop reading statements from the current file and read statements in an included file or

text module.

The INCLUDE line takes the following form:
INCLUDE 'filename[/[NO]LIST]'

filenam

e

Is a character string specifying the name of the file to be included; it must

not be a named constant.

The form of the file name must be acceptable to the operating

system, as described in your system documentation.

[NO]LIS

T

Specifies whether the incorporated code is to appear in the compilation

source listing. In the listing, a number precedes each incorporated

statement. The number indicates the "include" nesting depth of the code.

The default is /NOLIST. /LIST and /NOLIST must be spelled completely.

You can only use /[NO]LIST if you specify compiler option vms

(which sets OpenVMS defaults).

Main Program File

72

PROGRAM

INCLUDE 'COMMON.FOR'

REAL, DIMENSION(M) :: Z

CALL CUBE

DO I = 1, M

Z(I) = X(I) + SQRT(Y(I))

...

END DO

END

SUBROUTINE CUBE

INCLUDE 'COMMON.FOR'

DO I=1,M

X(I) = Y(I)**3

END DO

RETURN

END

Subprogram Example

module Ray

real(8), save:: V(3), X0(3)

logical, save:: triio

endmodule Ray

Program main

Implicit none

…

Call Triangle_Intersect(P, tmp, Flag)

End

function Cross_Product(a, b)

real(8),dimension(3):: Cross_Product,a(3),b(3)

Cross_Product=(/a(2) *b(3) - a(3) * b(2), a(3) * b(1) - &

a(1) * b(3), a(1) * b(2) - a(2) * b(1)/)

endfunction

subroutine Triangle_Intersect(P, tmp, Flag)

use Ray

implicit none

integer Flag, i0, ii(1)

real(8) P(3, 3), tmp, N(3), d, Beta, Tp(3), Q(3), NV

interface

function Cross_Product(a, b)

real(8),dimension(3):: Cross_Product,a,b

endfunction

endinterface

Flag=0; tmp=0.0d0

N=Cross_Product(P(2, :) - P(1, :), P(3, :) - P(1, :))

end

73

OPEN and CLOSE file

OPEN (unit=10, FILE='test.dat', FORM='FORMATTED', STATUS='OLD')

OPEN (10, FILE='test.dat', FORM=‘UNFORMATTED', STATUS=‘UNKNOWN')

CLOSE (10)

m Is a scalar default character expression that evaluates to one of the following values:

'FORMATTED' Indicates formatted data transfer

'UNFORMATTED' Indicates unformatted data transfer

'BINARY' Indicates binary data transfer

sta Is a scalar default character expression that evaluates to one of the following values:

'OLD' Indicates an existing file.

'NEW' Indicates a new file; if the file already exists, an error occurs. Once the file is created, its status changes to 'OLD'.

'SCRATCH' Indicates a new file that is unnamed (called a scratch file). When the file is closed or the program terminates, the scratch file is deleted.

'REPLACE' Indicates the file replaces another. If the file to be replaced exists, it is deleted and a new file is created with the same name. If the

file to be replaced does not exist, a new file is created and its status changes to 'OLD'.

'UNKNOWN' Indicates the file may or may not exist. If the file does not exist, a new file is created and its status changes to 'OLD'.

STATUS = sta

FORM = m

Connects an external file to a unit, creates a new file and connects it to a unit,

creates a preconnected file, or changes certain properties of a connection.

OPEN ([UNIT=] io-unit[, FILE= name] [, ERR= label] [, IOMSG=msg-var] [, IOSTAT=i-var],slist)

74

READ data

DIMENSION ia(10,20)

! Read in the bounds for the array.

! Then read in the array in nested implied-DO lists

! with input format of 8 columns of width 5 each.

！6 is the file number.

OPEN(6, FILE='input.dat’)

READ (6, 990) il, jl, ((ia(i,j), j = 1, jl), i =1, il)

990 FORMAT (2I5, /, (8I5))

CLOSE(6) !CLOSE the file.

! Internal read gives a variable string-represented numbers

CHARACTER*12 str

str = '123456’
READ (str,'(i6)') i

! List-directed read uses no specified format

REAL x, y

INTEGER i, j

READ (*,*) x, y, i, j

Input data from screen or files.

75

PRINT, WRITE, TYPE data

CHARACTER*16 NAME, JOB

PRINT *, NAME, JOB !* mean default format

PRINT 400, NAME, JOB ! 400 mean use 400 label format

400 FORMAT ('NAME=', A, 'JOB=', A)

OPEN(6,FILE='output.dat', FORM='FORMATTED',STATUS='NEW’)

WRITE (6, '(A11)') 'Abbottsford’! Output to file 6

WRITE (6, ‘(A, F6.2, I5, ES15.3)’) 'Answers are ', x, j, y !Format output

CLOSE(6)

! The following statements are equivalent:

PRINT '(A11)', 'Abbottsford’
WRITE (*, '(A11)') 'Abbottsford’!* mean screen

TYPE '(A11)', 'Abbottsford'

76

Unformatted I/O

• Binary data take less disk space than ASCII (formatted) data

• Data can be written to file in binary representation

• Not directly human-readable

• Note that there is no format specification

• Fortran unformatted slightly different format than C binary

• Fortran unformatted contains record delimiters

OPEN (199, file = ‘unf.dat’ , FORM = ‘UNFORMATTED’)

WRITE (199) x(1:100000), j1, j2

READ (199) x(1:100000), j1, j2

77

Understanding File Extensions
(For Intel Fortran Complier)

Filename Interpretation Action

file.a (Linux* and OS X*)

file.lib (Windows*)

Object library Passed to the linker.

file.f

file.for

file.ftn

file.i

Fortran fixed-

form source

Compiled by the Intel

Fortran compiler.

file.fpp

On Linux*, filenames with the

following uppercase extensions:

file.FPP

file.F

file.FOR

file.FTN

Fortran fixed-

form source

Automatically

preprocessed by the Intel

Fortran preprocessor fpp;

then compiled by the Intel

Fortran compiler.

file.f90

file.i90

Fortran free-form

source

Compiled by the Intel

Fortran compiler.

file.F90 (Linux* and OS X*) Fortran free-form

source

Automatically

preprocessed by the Intel

Fortran preprocessor fpp;

then compiled by the Intel

Fortran compiler.

file.s (Linux* and OS X*)

file.asm (Windows*)

Assembly file Passed to the assembler.

file.o (Linux* and OS X*)

file.obj (Windows*)

Compiled object

file

Passed to the linker.

The file extension determines whether a file gets passed to the compiler

or to the linker. The following types of files are used with the compiler:
• Files passed to the compiler: .f90, .for, .f, .fpp, .i, .i90,

.ftn

• Typical Fortran source files have a file extension of .f90, .for,

and .f. When editing your source files, you need to choose the source

form, either free-source form or fixed-source form (or a variant of

fixed form called tab form). You can use a compiler option to specify

the source form used by the source files or you can use specific file

extensions when creating or renaming your files. For example, the

compiler assumes that files with an extension of:
• .f90 or .i90: free-form source files

• .f, .for, .ftn, or .i: fixed-form (or tab-form) files

• Files passed to the linker: .a, .lib, .obj, .o, .exe, .res,

.rbj, .def, .dll

Input File Extensions

78

Compilation

•A compiler is a program that reads source code and
converts it to a form usable by the computer

• Internally, three steps are performed:
• preprocess source code

• check source code for syntax errors

• compiler translates source code to assembly language

• assembler translates assembly language to machine language

• linker gathers machine-language modules and libraries

• All these steps sometimes loosely referred to as “compiling”

79

Compiling Commands

• Intel compiler
• Serial: ifort myprog.f90 -o myprog

• OpenMP: ifort -qopenmp my-openmp-prog.f90 -o my-openmp-prog

• PGI compiler
• Serial:

• F90: pgif90 myprog.f90 -o myprog

• F77: pgf77 myprog.f –o myprog

• OpenMP: pgf90 -mp my-openmp-prog.f90 -o my-openmp-prog

• GNU compiler
• Serial: gfortran myprog.f90 -o myprog

• OpenMP: gfortran -fopenmp my-openmp-prog.f90 -o my-openmp-prog

• MPI
• Intel MPI: mpiifort, mpif90, mpif77

• HPC-X(Include Open MPI) and Open MPI: mpifort, mpif90, mpif77

• MPICH: mpif90, mpif77

80

-o outfilename Enable debug mode: -g

Understanding Errors During the Build Process
Intel compiler have the following format:

filename(linenum): severity #error number: message

Diagnostic Meaning

filename Indicates the name of the source file currently being processed.

linenum Indicates the source line where the compiler detects the condition.

severity Indicates the severity of the diagnostic message: Warning, Error, or Fatal error.

message Describes the problem.

Error Message Example

echar.for(7): error #6321: An unterminated block exits.

DO I=1,5

-------^

The pointer (---^) indicates the place on the source program line where the error was found

81

NOlihm.f90:146.14:

n2nd=0; npr=0

1

Error: Symbol 'npr' at (1) has no IMPLICIT type

GNU Fortran：

Filename:linenumber:position

Run-Time Message Display and Format

Fortran run-time messages have the following format:

forrtl: severity (number): message-text

where:

•forrtl: Identifies the source as the Intel® Fortran run-time system

(Run-Time Library or RTL).

•severity: The severity levels are: severe , error, warning, or info

•number: This is the message number

•message-text: Explains the event that caused the message.

Severity Description

severe Must be corrected. The program's execution is terminated when the error is encountered unless the program's I/O

statements use the END, EOR, or ERR branch specifiers to transfer control, perhaps to a routine that uses the

IOSTAT specifier.

error Should be corrected. The program might continue execution, but the output from this execution might be incorrect.

warning Should be investigated. The program continues execution, but output from this execution might be incorrect.

info For informational purposes only; the program continues.

x = -1.0000000E+32 x*100.0 = -1.0000000E+34

forrtl: error (72): floating overflow

Image PC Routine Line Source ovf.exe 08049E4A MAIN__ 14 ovf.f90

ovf.exe 08049F08 Unknown Unknown Unknown

Ovf.exe 400B3507 Unknown Unknown Unknown

ovf.exe 08049C51 Unknown Unknown Unknown

Abort

List of Run-Time Error Messages：Intel Fortran Compiler Classic and Intel Fortran Compiler Developer Guide and Reference
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-

reference/error-handling/handling-run-time-errors/list-of-run-time-error-messages.html

82

Some document
Supercomputing Center of USTC: http://scc.ustc.edu.cn/

83

http://scc.ustc.edu.cn/

Thank you!
Welcome USTC

